Subband Structure Engineering in Silicon-on-Insulator FinFETs using Confinement

نویسندگان

  • Z. Stanojevic
  • V. Sverdlov
  • S. Selberherr
چکیده

Splitting between equivalent valleys larger than the spin splitting energy is observed in confined electron systems, e.g. Si films grown either on SiGe substrate or Si dioxide and Si/SiGe quantum dots. Understanding the contribution of different factors in the valley degeneracy lifting is of key importance for the development of spin-based devices in Si. We demonstrate that the splitting between equivalent valleys strongly depends on the confinement direction and that it is orientation dependent. To explain the effect we use a simple but accurate two-band k·p model for the conduction band in silicon. Our data is in good agreement with recent results obtained by first-principle calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering

In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...

متن کامل

Simulating quantum transport in nanoscale MOSFETs: Ballistic hole transport, subband engineering and boundary conditions

We present a modeling scheme for simulating ballistic hole transport in thin-body fully depleted silicon-on-insulator pMOSFETs. The scheme includes all of the quantum effects associated with hole confinement and also accounts for valence band nonparabolicity approximately. This simulator is used to examine the effects of hole quantization on device performance by simulating a thin (1.5-nm) and ...

متن کامل

Subband engineering in n-type silicon nanowires using strain and confinement

We present a model based on k · p theory which is able to capture the subband structure effects present in ultra-thin strained silicon nanowires. For electrons, the effective mass and valley minima are calculated for different crystal orientations, thicknesses, and strains. The actual enhancement of the transport properties depends highly on the crystal orientation of the nanowire axis; for cer...

متن کامل

Impact of Confinement of Semiconductor and Band Engineering on Future Device Performance

A rigorous analysis of the subband structure in thin silicon films under stress is performed. Calculated subband effective masses are shown to depend on shear strain and thickness simultaneously. The effective masses and the subband splitting determine transport in silicon films. Decrease of the transport effective mass controlled by the shear strain component guarantees mobility enhancement ev...

متن کامل

A Novel SOI MESFET by Implanted N Layer (INL-SOI) for High Performance Applications

This paper introduces a novel silicon-on-insulator (SOI) metal–semiconductor field-effect transistor (MESFET) with an implanted N layer (INL-SOI MESFET) to improve the DC and radio frequency characteristics. The DC and radio frequency characteristics of the proposed structure are analyzed by the 2-D ATLAS simulator and compared with a conventional SOI MESFET (C-SOI MESFET). The simulated result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011